

Development of Model-Intensive & Web-based Rolling Mill Applications

Bingji (Benjamin) Li, Ph.D. www.metalpass.com/bli Metal Pass LLC www.metalpass.com

A:	Reasons for Development	4
B:	Software Features	.9
C:	Development & Validation	16
D:	Summary	21

A:	Reasons for Development	4
B:	Software Features	9
C:	Development & Validation1	6
D:	Summary2	21

1 Complicity of Today's Rolling Process

- > Mechanical
 - High speed (over 100m/s, or stain rate over 3000/s)
 - Interstand tension, especially in tied wire block
- > Metallurgical
 - Low-temperature rolling, incomplete recrystallization, grain growth
 - Microalloy application, precipitation
 - Planned delay (e. g. before finish block)
- > Thermal
 - Controlled water-box cooling, controlled air cooling
- > Interaction
 - Retained strain & grain change affect force and temperature
 - Flow stress formula failure in two-phase region

2 Complicity of Deformation

> Spread

- Material: some have 30-40% higher spread than others
- Speed: 2-3 times from low to high speed
- Geometry: roll/stock size, groove, gap, etc.
- Tension: high influence (unavoidable in wire block)
- Others: friction, lubrication, cooling, temperature, scale, etc.

> Forward Slip

- Friction (lubrication, cooling, temperature, scale, etc.)
- Interstand tension: interactive
- Others: geometry, material

> Friction

- Significance: Forward slip, spread, force, ...
- Influence: material, process and geometry, etc.

> Formability

Some materials only under small reduction (to avoid crack)

3 Needs for High-Quality Model & Software

- ➤ High-Quality Model to Describe Complicated Processes
 - Traditional models
 - Not accurate enough for new type of mill (tied stands in high speed)
 - Not fit to new rolling practice (low temperature, microalloy application)
- > Software to Handle Complicated Models
 - Interactive influences
 - are currently simplified
 - need to be sufficiently considered
 - Required: Models hard to understand and apply for most engineers
 - Affordable: High computing speed, to calculate many factors
- Programmer to Handle Logics Effectively
 - Many interactive effects
 - Effective design for software

4 Web-based Mill Software

- > Use
 - Team from multiple locations (countries, regions)
 - Maintenance, upgrading; access anywhere, any time, by any one
- > Development
 - Same way for web- and Windows-based software
 - Web server available & free
 - Easier in web: communication, memory and multi-user
 - More and more web tools available
- > Security
 - Even for mission critical banking and financial systems
- > Software Types
 - Particularly suitable for design and development software
 - Also good for online automation systems such as Level 2
 - Easier in data communication and memory management

A:	Reasons for Development	1
B:	Software Features	9
C:	Development & Validation1	6
D:	Summary2	1

1 General Features

Geometry	 Roll, Groove, Gap and Geometry, etc. Automatic prediction of rolled shape
Procedure	 Shinokura-Li, Hensel-Li, Wusatowski-Li Modified for new types of mill
Stock material	 AISI 1015, 1025, 1035, 1045, 1055, 1065, 1070, Stainless 302, 321, 430Ti, 446, Spring 9255, Bearing 52100 Cu99.97, Al99.5
Roll	 Cast Iron/steel roll, Rough/smooth steel roll, Hard cast roll Hard metal ground roll, Carbide tungsten roll
Cooling	 Dry, Water, Emulsion
Process parameters	 Speed, Temperature, Interstand tension, Friction (predicted)

2 Pass Design - AutoForm

	·
➤ Programs	■ Round-Oval-Round (2 passes)
	■ Square-Diamond-Square (2 passes)
	■ Billet-Box-Square-Oval-Round (4-passes)
	■ Billet-Box-Oval-Round (3-passes)
	■ Box-Box (2 passes)
➤ Model special	Large number of models combined
	Automatic loops; Both speed and accuracy
> Features	■ Full automatic pass design
	Mill operation data as input, no roll pass
	experience required
> Internal logics	■ E.g. bite angle; fill ratio; width/height ratio

3 Pass Design - FreeForm

> Programs	 Round-Oval-Round (unlimited passes) Square-Diamond-Square (unlimited passes)
> Model special	 Tension correction to spread and forward slip Multiple procedures available for selection Designed/verified based on high-speed wire block (NTM)
> Features	 Evaluating existing grooves/schedules to suggest remedial measures Special fit to wire block; verified also with roughing and intermediate mills Creating new passes based on proven old ones Studying tail-end and head-end issues

4 Mill Force/Torque

Programs	■ RD-OV, OV-RD, RD-OV-RD
	■ SQ-DI, DI-SQ, SQ-DI-SQ
	■ SQ-OV, BX-BX, General
> Model special	Mean flow stress: strain 0.05-1.5, strain rate
	0.05-500/s (3000/s), hot forming
	 Contact area: models describing real shape of each contact case
	Shape factor and lever arm ratio: experimentally
	established for each pass sequence

5 FDM Temperature Profile

> Programs	1 programDemo: metalpass.com/cool
> Model special	 Finite differential model Heat transfer coefficient models: stock/roll (pressure, speed), stock/air (relative speed), stock/ water (flow rate, pressure, temperature, etc.) Material data models, heat generation models, etc.
> Features	 Temperature profile from rolling, interpass cooling, water box cooling, forced air cooling Temperature in the core, surface, middle of the thickness, etc. over time

6 Other Programs

> Microstructure	 Input: material, size, temperature, time, etc.) Output: Recrystallized friction & grain size, etc. Dynamic & static recrystallization, grain growth
> Pass Manager	 Needed number of passes or needed entry size Roughing, intermediate, prefinishing & finishing. Mill specific learning
> Slab Manager	 Slab inventory - slab-providing Slab size optimization & Slab grade optimization
➤ Mill Diagnosis System	 Weaknesses of Level 2 model Causes and improvement recommendations

A:	Reasons for Development	4
B:	Software Features	9
C:	Development & Validation1	6
D-	Summary2) 1

1 Empirical Models Developed

- > Totally over 100 Models
- > Metal Flow
 - Spread, Forward slip; Tension effects, Material influence, ...
- > Force, Torque, Power
 - Flow stress, Contact area, Shape factor, ...
- > Data
 - Material data (temperature dependent)
 - Boundary data (heat transfer depending on many factors; friction)
- > Temperature, Heat Transfer
 - Heat transfer coefficient models, Thermal property models, ...
- **➤ Microstructure, Finish Properties**
 - Recrystallization, Grain growth, Finish properties, ...

2 Spread Model Validation

3 Forward Slip Model Validation

4 FDM Model Validation

D:	Summary 21
C:	Development & Validation 16
B:	Software Features9
A:	Reasons for Development4

D. Summary

1 Summary

- > Reasons for Development
 - Complicated rolling mill process demands sophisticated models and software
 - Good future-potential awaits web-based mill applications
- > Software Features
 - Web-based programs available for mill design and development
 - Good features: some powerful and others easy to use
- Development & Validation
 - Development based on sophisticated process modeling and data modeling
 - Quality verified with highly accurate models and extensive mill-tests

Thank You

Bingji (Benjamin) Li www.metalpass.com/bli Metal Pass LLC www.metalpass.com